terça-feira, 27 de abril de 2010

LEIS PONDERAIS - pesquisa para prof. Márcia

LEI DE LAVOUSIER
Antoine Laurent Lavoisier (1743-1794) era um químico francês que em 1785 descobriu a Lei de Conservação das Massas, que recebeu o nome de Lei de Lavoisier em homenagem ao seu criador. Esse cientista foi considerado o pai da química moderna, e sua lei se baseia no seguinte:

Lavoisier fez inúmeras experiências nas quais pesava as substâncias participantes, antes e depois da reação. Lavoisier verificou que a massa total do sistema permanecia inalterada quando a reação ocorria num sistema fechado, sendo assim, concluiu que a soma total das massas das espécies envolvidas na reação (reagentes), é igual à soma total das massas das substâncias produzidas pela reação (produtos), ou seja, num sistema fechado a massa total permanece constante.

Essa lei também pode ser enunciada pela famosa frase: "Na Natureza nada se cria e nada se perde, tudo se transforma".

Para compreender melhor a Lei de Lavoisier considere a experiência: Coloca-se 65 g de zinco dentro de um vidro contendo 98 g de ácido sulfúrico e em seguida fecha-se o vidro. Na reação química que ocorre entre as duas substâncias há formação de sulfato de zinco e desprendimento de hidrogênio. A massa do sulfato de zinco somada com a massa do hidrogênio desprendido será de 163 g.

Através do experimento podemos chegar à mesma conclusão que Lavoisier: Em um sistema fechado, quando duas ou mais substâncias reagem entre si, a massa total dos produtos é igual à soma das massas dos reagentes. Durante as reações químicas não há criação nem perda de massa, o que ocorre é a transformação das substâncias reagentes em outras substâncias.

É bom frisar que, depois de Lavoisier enunciar esta lei, outros cientistas fizeram novas experiências que visavam testar a hipótese proposta por ele e, mesmo ao utilizarem balanças mais modernas, de grande sensibilidade, os testes confirmaram o enunciado proposto.

Agora considere o seguinte fato: Quando um pedaço de ferro (Fe) é abandonado ao ar, vai se "enferrujando", ou seja, vai sofrendo uma reação química. Se compararmos a massa do ferro inicial com a do ferro "enferrujado", notaremos que esse último tem massa maior.
Será que nesse caso a massa não se conserva?

O que acontece é que os reagentes dessa reação química são ferro (sólido) e material gasoso (proveniente do ar).

massa do ferro + massa dos gases (ar) = massa do ferro "enferrujado"

O sistema inicial é constituído por ferro e ar e o sistema final por ferro "enferrujado", o aumento de massa efetivamente não existiu.

Por essa razão é necessário utilizarmos sistemas fechados para verificar a Lei de Lavoisier.


Lei da Conservação da Massa

Lavoisier mediu cuidadosamente as massas de um sistema antes e depois de uma reacção em recipientes fechados.

A figura ilustra uma possibilidade de se testar a Lei de Lavoisier num procedimento simples :



Provocando o contato entre as soluções reagentes (cloreto de sódio e nitrato de prata), surge um sólido levemente acinzentado, o precipatado de cloreto de prata e uma solução aquosa de nitrato de sódio.
Lavoisier constatou que a massa do sistema antes e depois da reação é a mesma.
Com base em inúmeras experiências, Lavoisier enunciou a Lei da Conservação da Massa: "Numa reação química, não ocorre alteração na massa do sistema".




Soma das massas dos REAGENTES = Soma das massas dos PRODUTOS


Ou: "Na Natureza nada se perde, nada se cria, tudo se transforma".





É bom frisar que, depois de Lavoisier enunciar esta lei, outros cientistas fizeram novas experiências que visavam testar a hipótese proposta por ele e, mesmo ao utilizarem balanças mais modernas, de grande sensibilidade, os testes confirmaram o enunciado proposto.

Quando um pedaço de ferro é abandonado ao ar, vai se "enferrujando", ou seja, vai sofrendo uma reação química. Se compararmos a massa do ferro inicial com a do ferro "enferrujado", notaremos que este último tem massa maior.
Será que neste caso a massa não se conserva?
O que acontece é que os reagentes dessa reacção química são ferro (sólido) e material gasoso, proviniente do ar.

massa do ferro + massa dos gases (ar) = massa do ferro "enferrujado"

Como o sistema inicial é constituído por ferro e ar, e o sistema final por ferro "enferrujado", o aumento de massa efetivamente não existiu.
Por essa razão é necessário utilizarmos sistemas fechados para verificar a Lei de Lavoisier.



LEI DE PROUST

A Lei de Proust também é conhecida como Lei das proporções constantes ou lei das proporções definidas. Esta lei foi inserida pelo químico francês Joseph Louis Proust (1754-1826), que realizou experimentos com substâncias puras e concluiu que independentemente do processo usado para obtê-las, a composição em massa dessas substâncias era constante. A Lei de Proust é definida assim:

As massas dos reagentes e produtos participantes de uma reação mantêm uma proporção constante.

Através de análises de inúmeras substâncias adquiridas por diferentes processos foi possível verificar que uma mesma substância tem sempre a mesma composição qualitativa e quantitativa. Por exemplo, qualquer amostra de água apresenta sempre 88,9 % de oxigênio e 11,1 % em massa de hidrogênio combinados na mesma proporção.

Proust realizou vários experimentos, e conclui que a água (substância pura) é formada de hidrogênio e oxigênio, sempre na proporção constate de 1/8 em massa, veja abaixo a demonstração de como eram feitos os experimentos para comprovar este dado:

Experimento Água Hidrogênio Oxigênio
1 18g 2g 16g
2 72g 8g 64g

Obs.: Nos dois experimentos foi possível constatar a massa fixa da água.

A conclusão dos estudos de Proust para a proporção entre as massas de hidrogênio e oxigênio segue a relação:

Massa de hidrogênio = 2 g = 8g = 10g = 1
Massa de oxigênio 16 g 64 g 80 g 8

A lei de Proust foi estudada e aprovada, e posteriormente estendida a qualquer reação química. É importante ressaltar que na época em que foram realizados os experimentos descritos, os cientistas não tinham acesso a aparelhos modernos de pesagem, as balanças existentes nesta época permitiam obter um peso não muito preciso, mas isto não impediu que fossem introduzidos os conceitos que temos acesso hoje.



MODELO ATÔMICO DE DALTON

Todo modelo não deve ser somente lógico, mas também consistente com a experiência. No século XVII, experiências demonstraram que o comportamento das substâncias era inconsistente com a idéia de matéria contínua e o modelo de Aristóteles desmoronou.

Em 1808, John Dalton, um professor inglês, propôs a idéia de que as propriedades da matéria podem ser explicadas em termos de comportamento de partículas finitas, unitárias. Dalton acreditou que o átomo seria a partícula elementar, a menor unidade de matéria.

Surgiu assim o modelo de Dalton: átomos vistos como esferas minúsculas, rígidas e indestrutíveis. Todos os átomos de um elemento são idênticos.



MODELO DE THOMPSON

O modelo atômico de Thomson (também conhecido como modelo do pudim de passas ou ainda como modelo do bolo de ameixa) é uma teoria sobre a estrutura atômica proposta por Joseph John Thomson, descobridor do elétron e da relaçao entre a carga e a massa do elétron, antes do descobrimento do próton ou do neutron.

Neste modelo, o átomo é composto de elétrons embebidos numa sopa de carga positiva, como as passas num pudim. Acreditava-se que os elétrons distribuiam-se uniformemente no átomo. Em outras oportunidades, postulava-se que no lugar de uma sopa de carga positiva seria uma núvem de carga positiva.

O modelo de Thomson foi superado após a experiência de Rutherford, quando foi descoberto o núcleo do átomo, originando um novo modelo atômico conhecido como modelo atômico de Rutherford.



MODELO RUTHERFORD

O modelo atômico de Rutherford, também conhecido como modelo planetário do átomo, é uma teoria sobre a estrutura do átomo proposta pelo físico neozelandês Ernest Rutherford, e está intimamente relacionado à experiência de Rutherford. Segundo esta teoria, o átomo teria um núcleo positivo, que seria muito pequeno em relação ao todo mas teria grande massa e, ao redor deste, os elétrons, que descreveriam órbitas circulares em altas velocidades, para não serem atraídos e caírem sobre o núcleo. A eletrosfera - local onde se situam os elétrons - seria cerca de dez mil vezes maior do que o núcleo atômico, e entre eles haveria um espaço vazio.

A falha do modelo de Rutherford é mostrada pela teoria do electromagnetismo, de que toda partícula com carga elétrica submetida a uma aceleração origina a emissão de uma onda electromagnética.

O elétron em seu movimento orbital está submetido a uma aceleração centrípeta e, portanto, emitirá energia na forma de onda eletromagnética.

Essa emissão, pelo Princípio da conservação da energia, faria com que o elétron perdesse energia cinética e potencial, caindo progressivamente sobre o núcleo, fato que não ocorre na prática. Esta falha foi corrigida pelo Modelo atômico de Bohr.



A Evolução dos Modelos Atômicos
(Resumo)



Leucipo (450 a. C.)
(pensamento filosófico)

Leucipo viveu por volta de 450 a. C. (à 2.450 de anos atrás) e dizia que a matéria podia ser dividida em partículas cada vez menores, até chegar-se a um limite.

Demócrito
(pensamento filosófico)

Demócrito, discípulo de Leucipo, viveu por volta de 470 a 380 a. C. e afirmava que a matéria era descontínua, isto é, a matéria era formada por minúsculas partículas indivisíveis, as quais foram denominadas de átomo (que em grego significa "indivisível"). Demócrito postulou que todos os tipos de matéria era formada a partir da combinação de átomos de 4 elementos: água, ar , terra e fogo. O modelo da matéria descontínua foi rejeitada por um dos grandes filósofos da época, Aristóteles, o qual afirmava que a matéria era contínua, isto é, a matéria vista como um "todo inteiro" (contrastando com a idéia de que a matéria era constituída por minúsculas partículas indivisíveis).

Dalton (1.808)
(métodos experimentais)

O químico inglês John Dalton, que viveu entre 1.766 a 1.825, afirmava que o átomo era a partícula elementar, a menor partícula que constituía a matéria. Em 1.808, Dalton apresentou seu modelo atômico: o átomo como uma minúscula esfera maciça, indivisível, impenetrável e indestrutível. Para ele, todos os átomos de um mesmo elemento químico são iguais, até mesmo as suas massas. Hoje, nota-se um equívoco pelo fato da existência dos isótopos, os quais são átomos de um mesmo elemento químico que possuem entre si massas diferentes. Seu modelo atômico também é conhecido como "modelo da bola de bilhar".



Modelo Atômico de Dalton: "bola de bilhar".
O átomo seria uma esfera (partícula) maciça e indivisível.

Thomson (1.897)
(métodos experimentais)

Pesquisando os raios catódicos, o físico inglês J. J. Thomson demonstrou que os mesmos podiam ser interpretados como sendo um feixe de partículas carregadas de energia elétrica negativa, as quais foram chamadas de elétrons. Utilizando campos magnéticos e elétricos, Thomson conseguiu determinar a relação entre a carga e a massa do elétron. Ele conclui que os elétrons (raios catódicos) deveriam ser constituintes de todo tipo de matéria pois observou que a relação carga/massa do elétron era a mesma para qualquer gás que fosse colocado na Ampola de Crookes (tubo de vidro rarefeito no qual se faz descargas elétricas em campos elétricos e magnéticos). Com base em suas conclusões, Thomson colocou por terra o modelo do átomo indivisível e apresentou seu modelo, conhecido também como o "modelo de pudim com passas":




Modelo de Thomsom: "pudim com passas".



O pudim é toda a esfera positiva (em azul) e as passas são os elétrons (em amarelo), de carga negativa.

Rutherford (1911)
(métodos experimentais)

O modelo atômico de Rutherford é baseado nos resultados da experiência que Rutherford e seus colaboradores realizaram: bombardeamento de uma lâmina muito fina (delgada) de ouro (Au) com partículas alfa (que eram positivas). Rutherford e seus colaboradores verificaram que, para aproximadamente cada 10.000 partículas alfa que incidiam na lâmina de ouro, apenas uma (1) era desviada ou refletida. Com isso, concluíram que o raio do átomo era 10.000 vezes maior que o raio do núcleo. Comparando, se o núcleo de um átomo tivesse o tamanho de uma azeitona, o átomo teria o tamanho do estádio do Morumbi. Surgiu então em 1.911, o modelo do átomo nucleado, conhecido como o modelo planetário do átomo: o átomo é constituído por um núcleo central positivo, muito pequeno em relação ao tamanho total do átomo porém com grande massa e ao seu redor, localizam-se os elétrons com carga negativa (compondo a "enorme" eletrosfera) e com pequena massa, que neutraliza o átomo.




Modelo atômico de Rutherford: modelo planetário do átomo.


O átomo é formado por um núcleo muito pequeno em relação ao átomo, com carga positiva, no qual se concentra praticamente toda a massa do átomo. Ao redor do núcleo localizam-se os elétrons neutralizando a carga positiva.



Bohr (1.913)
(métodos experimentais)


Nota-se no modelo de Rutherford dois equívocos:

uma carga negativa, colocada em movimento ao redor de uma carga positiva estacionária, adquire movimento espiralado em direção à carga positiva acabando por colidir com ela;

uma carga negativa em movimento irradia (perde) energia constantemente, emitindo radiação. Porém, sabe-se que o átomo em seu estado normal não emite radiação.

O físico dinamarquês Niels Bohr conseguiu "solucionar" os equívocos cometidos por Rutherford baseando-se na seguinte idéia:

· um elétron num átomo adquire apenas certas energias, e cada energia é representada por uma órbita definida, particular. Se o elétron recebe energia ele pula para uma outra órbita mais afastada do núcleo. Pode ocorrer no elétron a perda de energia por irradiação, e sendo assim, o elétron cai para uma órbita mais próxima do núcleo. Todavia o elétron não pode ficar entre duas órbitas definidas, específicas, pois essa não seria uma órbita estável ( órbita não específica ).
Conclui-se então que: quanto maior a energia do elétron, mais afastado ele está do núcleo.
Em outras palavras: um elétron só pode estar em movimento ao redor do núcleo se estiver em órbitas específicas, definidas, e não se encontra em movimento ao redor do núcleo em quaisquer órbitas.

As órbitas permitidas constituem os níveis de energia do átomo ( camadas K L M N ... ).

Sommerfeld (1.916)
(postulou)

Após o modelo de Bohr postular a existência de órbitas circulares específicas, definidas, em 1.916 Sommerfeld postulou a existência de órbitas não só circulares, mas elípticas também. Para Sommerfeld, num nível de energia n, havia uma órbita circular e (n-1) órbitas elípticas de diferentes excentricidades.
Por exemplo, no nivel de energia n = 4 (camada N), havia uma órbita circular e três órbitas elípticas. Cada uma das órbitas elípticas constitui um subnível, cada um com sua energia.

Nenhum comentário:

Postar um comentário